
Baseline TestingBaseline Testing

Jim SnyderJim Snyder
Jimmy WanJimmy Wan

Why Do We Test?Why Do We Test?

 Measure Software QualityMeasure Software Quality
– How good is our code right now?How good is our code right now?
– Tests do not ensure qualityTests do not ensure quality
– Design ensures quality; it is built into the Design ensures quality; it is built into the

product.product.
 Measure ProgressMeasure Progress

– Are we converging on a stable solution?Are we converging on a stable solution?
– Did we loose functionality, quality, or Did we loose functionality, quality, or

correctness?correctness?

What Kind Of Tests Do We Need?What Kind Of Tests Do We Need?

 Unit Tests (i.e. Abstract Data Types)Unit Tests (i.e. Abstract Data Types)
– Pre-conditions, Post-conditions, InvariantsPre-conditions, Post-conditions, Invariants

 Component TestsComponent Tests
– Cluster Classes integrated into small functional unitsCluster Classes integrated into small functional units

 Regression TestingRegression Testing
– Artifact testing tied to issue trackingArtifact testing tied to issue tracking

 Integration TestsIntegration Tests
– Assembled components in a contextualized environmentAssembled components in a contextualized environment

 Layer TestsLayer Tests
– Leverage the principal of Systematic IsolationLeverage the principal of Systematic Isolation
– If testing is difficult, revisit software architectureIf testing is difficult, revisit software architecture

 Performance TestsPerformance Tests
– Measure elements individually as appropriateMeasure elements individually as appropriate
– Measure integrated elements against functional scenariosMeasure integrated elements against functional scenarios

Test PlansTest Plans

 A design problem by itselfA design problem by itself
– How can I test an artifact well for a good How can I test an artifact well for a good

price?price?
 An organizational structure to ensure An organizational structure to ensure

systematic validationsystematic validation
– Requires an understanding of Software Requires an understanding of Software

ArchitectureArchitecture
– Requires synchronization with a Requires synchronization with a

Project PlanProject Plan

The Testing Paradox:The Testing Paradox:
 How to test the test? How to test the test?

Co
de

 B
as

e
Si

ze

Time

Typical Test Harness
 Uneconomical Approach

Typical Test H
arness

 Econom
ical Approach

Product Code Base
Developers Stop

Somewhere Here

Key Principals To Reduce Key Principals To Reduce
ComplexityComplexity

 Separation of Execution and ValidationSeparation of Execution and Validation
– Did my test execute (i.e. invoke functionality) as expected?Did my test execute (i.e. invoke functionality) as expected?
– Did I get the answer I expect? Can I write down the answer before I Did I get the answer I expect? Can I write down the answer before I

code?code?
– People People andand machines can understand visual difference; we should machines can understand visual difference; we should

exploit this overlap.exploit this overlap.
 Build Lego Style Testing ElementsBuild Lego Style Testing Elements

– Allow Test Elements share stateAllow Test Elements share state
– Tests can measure deltas from a known stateTests can measure deltas from a known state

 Leverage Systematic IsolationLeverage Systematic Isolation
– Lego blocks + ordered execution + baseline = suiteLego blocks + ordered execution + baseline = suite

Baseline Test FrameworkBaseline Test Framework

 Test plan implementation toolkit without dictating Test plan implementation toolkit without dictating
test plan structuretest plan structure

 Not a test plan substituteNot a test plan substitute
– Frameworks don’t eliminate thinking or planningFrameworks don’t eliminate thinking or planning
– Designed to realize the previously stated testing Designed to realize the previously stated testing

principalsprincipals
 Build System AgnosticBuild System Agnostic

– Maven, Ant, IDEs, command lineMaven, Ant, IDEs, command line
 Should Augment other Software Metric CollectionShould Augment other Software Metric Collection

– Code Coverage (e.g. the 80%/80% rule)Code Coverage (e.g. the 80%/80% rule)
– Profiling (e.g. performance tests)Profiling (e.g. performance tests)

Baseline Test Framework:Baseline Test Framework:
 Software Elements Software Elements

 Framework ElementsFramework Elements
– Test ContextTest Context
– Test SuiteTest Suite
– Test Case Test Case

– Test Case StepTest Case Step
 Runtime EnvironmentRuntime Environment

– Sharable Test StateSharable Test State
– Explicit Points of VariationExplicit Points of Variation

 input inheritance hierarchy from least to most specific.input inheritance hierarchy from least to most specific.

Baseline TestingBaseline Testing

Putting it all together ...Putting it all together ...

File System LayoutFile System Layout

 The contextsThe contexts
– Context descriptorContext descriptor
– Input dataInput data

 The suitesThe suites
– Suite descriptorSuite descriptor

– Expected baselineExpected baseline
 The resultsThe results

– Testrun logTestrun log

– Actual to compareActual to compare

– Transient filesTransient files

Define a Test ContextDefine a Test Context

 XML with two partsXML with two parts
– Java System PropertiesJava System Properties

– Context ArgumentsContext Arguments
 Inherited by all suitesInherited by all suites

 At RuntimeAt Runtime
– Files relative to the context Files relative to the context

are readable.are readable.

– Each suite instance is bound Each suite instance is bound
to a context.to a context.

Define a Test SuiteDefine a Test Suite

 XML with args and test XML with args and test
cases in ordercases in order
– Must define the comparator.Must define the comparator.

– Must define applicable Must define applicable
contexts.contexts.

– Inherited args can be Inherited args can be
overridden.overridden.

 Suite Life-cycleSuite Life-cycle
– init, doWork, cleanupinit, doWork, cleanup

– Each test case is integrated Each test case is integrated
into the life-cycle.into the life-cycle.

Define A TestCaseDefine A TestCase

 A TestCase A TestCase
subclasssubclass

 Optional argsOptional args
– Can have test case Can have test case

stepssteps
– Iterated over Iterated over

during doWork.during doWork.

Define a Test Case (cont.)Define a Test Case (cont.)

 Four life-cycle Four life-cycle
methodsmethods
– ConstructorConstructor
– InitInit
– CleanupCleanup
– DoWorkDoWork

 Args and State Args and State
available via APIavailable via API

Example Baseline OutputExample Baseline Output

<TEST_SUITE>
<TEST_SUITE_INIT>
<TEST_CASE_INIT>
</TEST_CASE_INIT>
<TEST_CASE_INIT>
</TEST_CASE_INIT>
</TEST_SUITE_INIT>
<TEST_SUITE_DO_WORK>
<TEST_CASE>
<TEST_CASE_STEP>
of inherited arguments: 5
key: arg1 value: suiteArg1
key: arg2 value: suiteTestCaseArg2
key: arg3 value: testcaseArg3
key: arg4 value: step1Arg4
key: arg5 value: contextArg5
</TEST_CASE_STEP>
<TEST_CASE_STEP>
of inherited arguments: 5
key: arg1 value: suiteArg1
key: arg2 value: suiteTestCaseArg2
key: arg3 value: testcaseArg3

key: arg3 value: testcaseArg3
key: arg4 value: testcaseArg4
key: arg5 value: contextArg5
</TEST_CASE_STEP>
<TEST_CASE_STEP>
of inherited arguments: 5
key: arg1 value: suiteArg1
key: arg2 value: suiteArg2
key: arg3 value: testcaseArg3
key: arg4 value: step3Arg4
key: arg5 value: contextArg5
</TEST_CASE_STEP>
</TEST_CASE>
</TEST_SUITE_DO_WORK>
<TEST_SUITE_CLEANUP>
<TEST_CASE_CLEANUP>
</TEST_CASE_CLEANUP>
<TEST_CASE_CLEANUP>
</TEST_CASE_CLEANUP>
</TEST_SUITE_CLEANUP>
</TEST_SUITE>

	Baseline Testing
	Why Do We Test?
	What Kind Of Tests Do We Need?
	Test Plans
	The Testing Paradox: How to test the test?
	Key Principals To Reduce Complexity
	Baseline Test Framework
	Baseline Test Framework: Software Elements
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

